
CS103 Handout 20
Spring 2015 May 13, 2015

Extra Practice Problems 4

Here's a set of practice problems you can work through to help prepare for the upcoming midterm
exam. We'll release solutions and another set of practice problems on Friday.

Problem One: Binary Relations
A binary relation R over a set A is called a Euclidean relation if the following is true about R:

∀x ∈ A. ∀y ∈ A. ∀z ∈ A. (xRy ∧ xRz → yRz)

The terminology comes from an axiom given by Euclid in his classical text The Elements: “things
which equal the same thing also equal one another.”

i. Let k ∈ ℕ be a positive natural number. Is ≡ₖ Euclidean? How about ≤?

ii. Let R be an arbitrary binary relation over some set A. Prove that R is an equivalence relation
if and only if it is reflexive and Euclidean.

Here's an unrelated question about relations.

iii. How many different equivalence relations are there over the set {a, b, c}? (Hint: what struc-
ture are equivalence relations supposed to capture?)

Problem Two: Cardinality
We have a good intuitive feel for what it means for a set to be finite or infinite – an infinite set con-
tains infinitely many elements, and a finite set contains only finitely many. However, this definition is
somewhat circular – if you don't already know what “infinite” and “finite” mean, these definitions
won't really help you!

When set theory was first being developed, the mathematician Richard Dedekind came up with a
proposed definition of what it means for a set to be infinite, which we now call Dedekind-infinite-
ness. A set S is called Dedekind-infinite if there is at least one injection f : S → S that isn't a bijec-
tion. This question explores properties of Dedekind-infiniteness.

i. Prove or disprove: ℕ is a Dedekind-infinite set.

ii. Prove or disprove: [0, 1] is a Dedekind-infinite set. Here, [0, 1] is the set of all real numbers
between 0 and 1, inclusive.

iii. Prove that if S is a set and |S| = k for some natural number k, then S is not Dedekind-infinite.
(Hint: proceed by contradiction and use the pigeonhole principle.)

2 / 2

Problem Three: The Pigeonhole Principle
Suppose that you color every point in the real plane one of four colors (say, red, green, blue, and yel-
low). Prove that no matter how you color the plane, there will always be a trapezoid whose corners
are all the same color. (Recall that a trapezoid is a quadrilateral with at least two parallel sides.) For
example, all of the following figures are trapezoids:

(Hint: Try placing a specially-constructed object – say, a grid of dots – into the plane such that no
matter how that object is colored, the object always contains a trapezoid whose corners are the same
color.)

Problem Four: Regular Languages
For each of the following, show that the given language is regular by designing a DFA or NFA for it
and by designing a regular expression for it.

i. Let Σ = {a, b}. Show that Σ* is regular via a DFA/NFA and a regular expression.

ii. Let Σ = {a, b, c}. Let L = { w ∈ Σ* | any b's in w appear after the first c in w }. Show that L
is regular via a DFA/NFA and a regular expression.

iii. Let Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} and let L = { w ∈ Σ* | w is the base-10 representation of
an even number and w has no extraneous leading zeros }. Show that L is regular via a
DFA/NFA and a regular expression.

Problem Five: Nonregular Languages
Let Σ = {a, b} and let L = { w ∈ Σ* | w has odd length and its middle character is a }. Prove that L
is not a regular language.

Problem Six: Context-Free Languages
Let Σ = { (,) }. Let L = { w ∈ Σ* | w is a prefix of a string of balanced parentheses }. For example,
since the string ((()())) is a string of balanced parentheses, we see that ε ∈ L, (∈ L, ((∈ L,
(((∈ L, ((() ∈ L, ((()(∈ L, etc. Note that since any string is a prefix of itself, any string of
balanced parenthees belongs to L. However, (())) ∉ L, ((()))()) ∉ L, and) ∉ L.

Design a context-free grammar for L. (Hint: Think about the intuition we used to get the initial gram-
mar for balanced parentheses, then think about where the “cut” is made to form the prefix.)

